If it's not what You are looking for type in the equation solver your own equation and let us solve it.
23m^2+100m+19=0
a = 23; b = 100; c = +19;
Δ = b2-4ac
Δ = 1002-4·23·19
Δ = 8252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8252}=\sqrt{4*2063}=\sqrt{4}*\sqrt{2063}=2\sqrt{2063}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-2\sqrt{2063}}{2*23}=\frac{-100-2\sqrt{2063}}{46} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+2\sqrt{2063}}{2*23}=\frac{-100+2\sqrt{2063}}{46} $
| 6(c+2)=6c=12 | | 6,8x=3,1x-1,4x+4 | | 0.80k+0.70=0.86k-0.60 | | 1/2r+36= | | 6=-2/5+u | | 4000+100x=500x | | 17r—7r=10 | | -138=6(2v-7) | | 4=1/3x-7 | | 25m^2+100m+19=0 | | (x2−3x+4)−(x3+7x−2)=0 | | -3u/4=9 | | -3/2=3/5y-2/3 | | 3x+28+2x-10=5x+52 | | 2(-2+(-3/5y))-3y=-4 | | 4(x+9)=2(2x+9)+(−18) | | -4(-5v+1)=96 | | 4.1+u/4=-2.3 | | -217=-7(-56a) | | 0.50xX=5 | | -6w+12=-3(w+6) | | 300+5c=20c | | 4x+60=2x-30 | | 300+5c=30c | | −9.5x+0.29=−7.31 | | -3(x-7)=-7x-11 | | 124=-4(4-7m) | | 124=-4(4-7m | | -2x+36=-4(x-4) | | (300+5)c=20c | | 128=-8(-2x-2) | | 2(30-w)+2w=60 |